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Abstract- In this paper we improve the efficiency 
of the multi core ECUs by using multisource 
software. As the demand for computing power is 
quickly increasing in the automotive domain, car 
manufacturers and tier-one suppliers are 
gradually introducing multicore electronic control 
units (ECUs) in their electronic architectures. In 
addition, these   multicore ECUs offer new 
features such as higher levels of parallelism, which 
ease the compliance with safety requirements . 
These new features involve greater complexity in 
the design, development, and verification of the 
software applications.  Here applying algorithms 
to improve the efficiency of ECUs. dynamic 
method is used for executing the different type of 
runnables. In this paper, we address the problem 
of sequencing numerous elementary software 
modules, called runables, on a limited set of 
identical cores. Wke show how this problem can 
be addressed as the following two sub problems, 
which cannot optimally be solved due to their 
algorithmic complexity:  

Partitioning the set of runnables, Building the 
sequencing of the runnables on each core. We then 
present low-complexity heuristics to partition and 
build sequencer tasks that execute the runnable 
set on each core. Finally, we globally address the 
scheduling problem, at the ECU level, by 
discussing how we can extend this approach in 
cases where other OS tasks are scheduled on the 
same cores as the sequencer tasks. 

Keywords- electronic control units (ECUs), Least 
crowded (LC), Least loaded (LL), Least peak(LP), 
Least peak sigma(LPS). 

1. Introduction 
 
MULTISOURCE software running on the 

same electronic control unit (ECU) is becoming 
increasingly wide spread in the automotive industry. 
This case is one of the main reasons that car 
manufacturers want to reduce the number of ECUs. 

One major outcome of the Automotive Open 
System Architecture (AUTOSAR) initiative and, 
more specifically, its operating system (OS) is to help 
car manufacturers shift from the “one function per 
ECU” paradigm to more centralized architecture 
designs by providing appropriate protection 
mechanisms. 

Another crucial evolution in the automotive 
industry is that chip manufacturers are reaching the 
point where they can no longer cost effectively meet 
the increasing performance requirements through 
frequency scaling alone. This condition is one reason 
that multicore ECUs are gradually introduced in the 
automotive domain. The higher level of performance 
provided by multicore architectures may help 
simplify in-vehicle architectures by executing on 
multiple cores that the software previously run on 
multiple ECUs. This possible evolution toward more 
centralized architectures is also an opportunity for car 
manufacturers to decrease the number of network 
connections and buses. As a result, parts of the 
complexity will be transferred from the 
electrical/electronic architecture to the hardware and 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013                                                                    1783 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org  

software architecture of the ECUs. However, static 
cyclic scheduling makes it easy to add functions to an 
existing ECU. 

In practice, important architectural shifts are 
hindered by the carryover of ECUs and existing 
subnetworks, which are widely used by generalist car 
manufacturers. The extent to which more centralized 
architectures will be adopted thus remains unsure. 

The introduction of multisource and 
multicore will induce drastic changes in the software 
architecture of automotive ECUs. Section II 
introduces the most likely scheduling choices and the 
literature relevant to the task scheduling in 
multiprocessor automotive ECUs. Then, Section III 
presents solutions for the scheduling of numerous 
software modules 
when only a few OS tasks are allowed. This paper 
builds on the study published in [5], where it was 
assumed that only one sequencer task was running on 
each core of the ECU to schedule the runnables. In 
Section V, we consider how we can build several 
sequencer tasks while possibly scheduling other asks 
on the same core, and we discuss how we can 
globally analyze the schedulability of such systems. 
For clarity, “sequencing” refers to the scheduling of 
runnables, whereas “scheduling” is solely used for 
tasks. 
 
2. Scheduling in the automotive domain 
 
Scheduling Design Choices for Multicore 
ECUs 

 
In this section, we explain and justify, 

particularly in light of predictability requirements, the 
multicore scheduling approach, which is, to the best 
of our knowledge, the most widely considered 
method in the automotive industry. 
1) Partitioning Scheduling Scheme: In a multicore 
system, either the tasks are statically allocated to the 
cores or they can dynamically be distributed at 
runtime to balance the workload or migrate functions 
to increase availability. The latter approach involves 
complex tasks and resource interactions that are 
difficult to predict and validate. Thus, approaches 
that rely on static allocation (i.e., partitioning) and 
deterministic mechanisms such as periodic cyclic 
scheduling are more likely to be used in the 

automotive context, and this is the option taken 
within the AUTOSAR consortium. Scheduling tasks 
on a multiprocessor systems under the static 
partitioning approach has been well studied; for 
example, see [6]–[9]. However, the works we are 
aware of deal with online algorithms such as fixed 
priority preemptive (FPP) or earliest deadline first 
(EDF) and do 
not consider the static cyclic scheduling of tasks. 
2) Static Cyclic Scheduling: The static cyclic 
scheduling of elementary software modules or 
runnables is common, because there are usually many 
more runnables than the maximum number of tasks 
allowed by automotive operating systems such as 
OSEK/VDX or AUTOSAR OS. Thus, runnables 
must be grouped together and scheduled within a 
sequencer task (also 
called a dispatcher task). In this paper, we focus on 
how we can sequence large runnable sets on 
multicore platforms using a 
static partitioning approach. Indeed, the static task 
partitioning scheme is very likely to be adopted, at 
least, in a first step, because it is conceptually simple 
and provides better predictability for ECU designers 
compared with a global scheduling approach. We aim 
at developing practical algorithms whose 
performances can be guaranteed to build the 
dispatcher tasks on each core and to schedule the 
runnables within these dispatcher tasks to comply 
with sampling constraints and, as long as possible, 
uniformize the CPU load over time. This latter 
objective is, of course, important to minimize the 
hardware cost 
and to facilitate the addition of new functions, as 
typically done in the incremental design process of 
car manufacturers. This objective is achieved by 
desynchronizing the runnable release 
dates. Precisely, the first release date of each 
runnable, called its offset, is determined to uniformly 
spread the CPU demand over time. The configuration 
algorithms developed in this paper are closely related 
to [10] (monoprocessor scheduling of tasks with 
offsets) and [11] (scheduling of frames with offsets), 
but it is applied to multicore and goes beyond as we 
provide lower bounds on the performances. 
However, the proprietary algorithms used in these 
tools can usually not be disclosed, and they are 
sometimes specialized for some specific usage. 
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       Fig. 1. Model of the runnables. After its release, 
an instance of a runnable has to be executed before 
the next instance is released (i.e., the deadline is set 
to 
the period). 
  
Model Description 
In this paper, we consider a large set of n periodic 
elementary software modules, also called runnables, 
that will be allocated 
on an ECU that consists of m identical cores. In 
practice, a runnable can be implemented as a function 
that is called, 
whenever appropriate, within the body of an OS task. 
1) Runnable Characteristics: The ith runnable 
is denoted by Ri = (Ci, Ti,Oi, {R}, Pi). Quantities Ci, 
Ti, and Oi correspond, 
respectively, to the worst case execution time 
(WCET), the period (i.e., the exact time between two 
successive releases), and the offset of Ri. As shown 
in Fig. 1, the offset of a runnable is the release date of 
the first instance of that runnable, and subsequent 
instances are then periodically released. The choice 
made for the offset values has a direct influence on 
the repartition of the workload over time. 
 2) Dispatcher Task: Runnables are scheduled on 
their designated core using a dispatcher task or a 
“sequencer task,” which stores the runnable 
activation times in a table and releases them at the 
right points in time. A dispatcher task is characterized 
by the duration of the dispatch table Tcycle, 
which is executed in a cyclic manner, and by a 
quantum Ttic, which is the duration of a slot in the 
table. Typically, we may have, for example, Tcycle = 
1000 ms and Ttic = 5 ms. Note that Tcycle must be a 
multiple of the greatest common divisor of the 
runnable periods and the least common multiple 
(LCM) of these periods must be a multiple of Ttic. As 
a result, a dispatch table holds Tcycle/Ttic slots.  
3) Assumptions: In this paper, we place a set of 
working assumptions, which, in our experience, can 

most often be met in current automotive applications, 
as follows. 
• Each runnable is periodically executed strictly. As a 
result, the whole trajectory of the system is defined 
by the first 
activation times of the runnables (i.e., their offsets). 
• The WCETs of the runnables are assumed to be 
small compared to Ttic. Typical values for the case 
that we consider would be 5 ms for Ttic and Ci ≤ 300 
μs. 
• All cores are identical with regard to their 
processing 
speed. 
• There are no dependencies between runnables 
allocated on different cores. Therefore, all cores can 
independently be scheduled. This assumption is in 
line with the choices made by AUTOSAR with 
regard to multicore architecture. 
4) Schedulability Condition: Assuming that we 
only consider runnable scheduling, the system is 
schedulable and, thus, 
can safely be deployed if and only if the following 
conditions are satisfied on each core. 
1) The runnables are strictly periodically executed. 
2) The initial offset of each runnable is smaller than 
its period. 
3) The sum of the WCET of the runnables allocated 
in each slot does not exceed a given threshold, which 
is typically chosen as the duration of the slot, i.e., 
Ttic. 
 
3. RUNNABLE SEQUENCING 
ALGORITHMS FOR MULTICORE 
PROCESSORS 
 In this section, we present algorithms and, 
when possible, derive 
lower bounds on their efficiency to schedule large 
numbers of runnables on multicore ECUs. Because 
automotive OSs can only handle a limited amount of 
OS tasks, the sequencing of runnables has to be done 
within dispatcher tasks. The first step of the approach 
is to partition the runnable sets onto different cores. 
The next and last step is to determine the offsets 
between the runnables allocated on each core to 
balance the load over time. 
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A. Building Tasks as a Bin-Packing Problem 
It is assumed that the number of cores is 

fixed. We first distribute all the runnables on the 
cores. Assigning n tasks to 
m cores is similar to subdividing a set of n elements 
into m nonempty subsets. By definition, the number 
of possibilities for this problem is given by the 
Stirling number of the second kind  

              

 
Considering that the runnables may have core 
allocation constraints, the cores should be 
distinguished. Thus, the m! combinations 
of cores must be considered. As a result, we have at 
most different possibilities for the partitioning 
problem alone. Such a complexity prevents us from 
an exhaustive search. For example, with n = 30 and m 
= 2, the search space holds more than one billion 
possibilities. Considering this complexity, to balance 
as evenly as possible the utilization of processor 
cores, we propose a heuristic based on the bin-
packing decreasing worst-fit scheme for a fixed 
number of bins (where “bins” are processor cores). 
The heuristic is given in Algorithm 1. 
B. Strategies for Sequencing Runnables 

The next stage consists of building the 
dispatch table for the set of runnables. In the first 
step, it is assumed that there are no precedence 
constraints between the runnables and that a single 
sequencer table is needed per core. This latter 
assumption can easily be relaxed, as done in Section  

 
1) Least Loaded Algorithm: Considering a 
runnable Ri of period Ti, there are (Ti/Ttic) 
possibilities for allocating this runnable (see 
schedulability condition 2 in Section II-B4). As a 
result there are i=1(Ti/Ttic) alternative schedules for 
the n runnables, and given the cost function, we are 
not aware of any 
ways of finding the optimal solution with an 
algorithm that does not have an exponential 
complexity. Considering a realistic case of 50 
runnables whose period is as least twice as large as 
Ttic, we would need to evaluate a minimum of 250 
possible solutions. Once again, given the complexity, 
we have to resort to a heuristic. Here, we adapt to the 

problem of sequencing runnables the LL algorithm 
proposed by Grenier et al. in [11] 
for the frame offset allocation on a controller area 
network. 
The intuition behind the heuristic is simple. At each 
step, we assign the next runnable to the LL slot, as 
described in Algorithm 2. The load of a slot is the 
sum of the Ci of the 
runnables {Ri} assigned to this slot. This algorithm is 
further referred to as the LL algorithm. 
 
slot 1 2 3 4 5 6 7 
 
load 2 4 2 3 2 4 2 
 

For practical applications, ties at step 1 are 
broken using the highest WCET first, and ties at step 
2a are broken by choosing the central slot of the 
longest sequence of consecutive slots having the 
minimum load. Although the latter rule for breaking 
ties does not have any impact on the theoretical 
results, which will be derived next, it helps separate 
load peaks, which is important from the ECU 
designer point of view. As an illustration, applying 
the LL heuristic to the set of runnables-mode voltage.  

2) Upper Bound on the Peak Load: Here, we 
derive an upper bound on the peak load, which holds 
for runnable sets with harmonic periods (i.e., each 
period is a multiple of all smaller periods). Based on 
this value, we consequently derive a closed form 
sufficient schedulability condition. In this perspective 
we first point out that the slots in which a runnable Ri 
will periodically be assigned are of equal load, which 
is the rationale behind step 2a in Algorithm 2. 

Lemma 1: Before the allocation of a runnable Ri, 
the slot allocation induced by the previously allocated 
runnables repeats with a period (Ti/Ttic). 

 Lemma 2: The maximum load in the LL slot is 
obtained for perfect load balancing, which 
corresponds to a constant load throughout the cycle. 

Proof: Reasoning with a constant allocated load, 
anything else than a perfect load balancing will result 
in a load below the average load per slot in some slot 
that will eventually be chosen to allocate the runnable 
under consideration. 
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Theorem 3: On processor k, an upper bound on the 
peak load of a slot allocation is 

 

Proof: In the case of perfect load balancing, before 
the allocation of R_ i, the load of a slot is given by 

          

After the allocation of Ri, the load in the 
corresponding slot is 

            

 

Consequently, the worst case peak load on processor 
core k resulting from the allocation of Ri in a slot is 

 

4. EXPERIMENTATIONS 

Here, we evaluate the ability of the algorithms to 
uniformize the CPU load over time and to keep on 
providing feasible solutions at very high load levels. 
For this purpose, the algorithms LL, LP, and LPkσ, 
described, respectively, in Sections III-B1, B4, and 
B5, have been implemented in the freely available 
software RTaW-ECU. 

A. Balancing Performance 

We applied the algorithms to sets of runnables that 
are realistic in the sense that their characteristics (i.e., 
period and WCET) are drawn at random from 
distributions derived from an existing body gateway 
ECU with about 200 runnables whose periods are 
close to harmonic (only about 5% of the runnables 
have no harmonic periods). 

In the experiments, the duration of the slot Ttic is set 
to 5 ms, the largest WCET is 30 times the smallest 
WCET, and the periods are nonharmonic, chosen in 
{10, 20, 25, 40, 50, 100, 200, 250, 500, 1000} ms. 
Random dependencies between runnables are also 
introduced through the following three parameters. 

• Interdependency ratio, i.e., the percentage of 
runnables that are dependent and must thus be 
executed on the same core, is chosen equal to 30%. 

• Maximum size of the clusters of dependent 
runnables is equal to 4. 

• Core locality constraint ratio is the percentage of 
runnables that are pre allocated to a given core, 
chosen to be equal to 30%. 

The following additional parameters are used for this 
experimentation: 

1) Cmax = 300 μs; 2) Ttic = 5 ms; 3) Tcycle = 1 s. 

In addition, there are more than 4000 runnables to 
schedule on three cores, inducing an average load of 
95% of the capacity of the ECU. 

 

     Fig2.Distribution of the load percentage over time. 

The parameters have been set so that the problem is 
challenging, because we are above the harmonic 
schedulability bound, which would be 94% here.   

B.Schedulability Performances and 
Robustness on  Automotive ECUs 

The goal is to assess the extent to which the 
schedulability bound, even if it has been derived in 
the harmonic case, can provide guidelines for the 
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nonharmonic case. Precisely, we measure the success 
rate of the algorithms in the nonharmonic case at load 
levels such that feasibility would be ensured in the 
harmonic case. In the existing body gateway ECU, 
the set of task periods is close to be harmonic, 
because withdrawing only a few runnables ensures 
the harmonic property. To test the algorithms in a 
more difficult context, we build a “hard” 
nonharmonic case with more departure from the 
harmonic property. Precisely, the periods are now 
chosen in the set {10, 20, 25, 40, 50, 100, 125, 200, 
125, 500, 1000} ms. 

As shown in Table III, when the load is close to the 
harmonic schedulability bound, the algorithms 
remain efficient, in particular the LP, which 
successfully scheduled the 1000 random 
configurations of the test. This result suggests that the 
harmonic schedulability bound is also a good 
dimensioning criterion in the nonharmonic case. 
Table IV presents the results obtained at higher loads, 
i.e., above the harmonic schedulability bound. 
Precisely, sets of runnables with the maximum 
WCET equal to 300 and 900 μs and CPU loads equal 
to 95% and 97% are scheduled with LL, LP, and 
LP1σ. 

6. CONCLUSION 

Multisource software and multicore ECUs will 
drasticall change the electrical/electronic 
architectures and should enable more cost effective 
and more flexible automotive embedded systems. In 
our view, the OS protection mechanisms specified by 
AUTOSAR provide a sound basis for developing 
appropriate safety mechanisms and policies, despite 
the growing complexity and criticality of software 
functions. However, current design methodologies 
need to be adapted to this new context, and there is a 
wide range of technical problems to be solved. 

Among these issues are the design of the software 
architectures and the scheduling of the software 
components, which have been considered in this 
paper. The set of runnable sequencing algorithms 
proposed in this paper aims at uniformizing the load 
over time and thus increases the maximum workload 
schedulable on the CPU. The algorithms also provide 
guaranteed performance levels in some specific 

contexts. Experimentations on realistic case studies 
have confirmed that the algorithms are versatile and 
efficient in terms of CPU usage optimization. 

 

  

Fig 3. Outpuf of LP algorithm with efficiency 92% 

We have presented practical solutions for 
scheduling activities according to both the static 
cyclic and priority-driven paradigms, as it is 
becoming a need in automotive multicore ECUs and 
other complex embedded systems with dependability 
requirements such as in the aerospace domain. 

 

Fig 4. Output of LL algorithm with efficiency 
91%

 

Fig 5. Output of LP sigma algorithm with efficiency 
94% 
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Fig 5. Output of LC algorithm with efficiency 98% 

This approach first requires the precise modeling of 
the data exchanges and capturing their timing 
constraints, for example, using the TIMMO-2-USE 
methodology. 
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