
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1782
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

New Strategies For Multisource Software on
Multicore Automotive Electronic Control Unit

RINOLD WILSON P.G.(PG SCHOLAR),

ALEX GEORGE(ASSISTANT PROFESSSOR),

Department of Electrical And Electronics Engineering,
SNS College Of Engineering,

Kurumbapalayam, Coimbatore,
india

mail@:rinold777@gmail.com

Abstract- In this paper we improve the efficiency
of the multi core ECUs by using multisource
software. As the demand for computing power is
quickly increasing in the automotive domain, car
manufacturers and tier-one suppliers are
gradually introducing multicore electronic control
units (ECUs) in their electronic architectures. In
addition, these multicore ECUs offer new
features such as higher levels of parallelism, which
ease the compliance with safety requirements .
These new features involve greater complexity in
the design, development, and verification of the
software applications. Here applying algorithms
to improve the efficiency of ECUs. dynamic
method is used for executing the different type of
runnables. In this paper, we address the problem
of sequencing numerous elementary software
modules, called runables, on a limited set of
identical cores. Wke show how this problem can
be addressed as the following two sub problems,
which cannot optimally be solved due to their
algorithmic complexity:

Partitioning the set of runnables, Building the
sequencing of the runnables on each core. We then
present low-complexity heuristics to partition and
build sequencer tasks that execute the runnable
set on each core. Finally, we globally address the
scheduling problem, at the ECU level, by
discussing how we can extend this approach in
cases where other OS tasks are scheduled on the
same cores as the sequencer tasks.

Keywords- electronic control units (ECUs), Least
crowded (LC), Least loaded (LL), Least peak(LP),
Least peak sigma(LPS).

1. Introduction

MULTISOURCE software running on the

same electronic control unit (ECU) is becoming
increasingly wide spread in the automotive industry.
This case is one of the main reasons that car
manufacturers want to reduce the number of ECUs.

One major outcome of the Automotive Open
System Architecture (AUTOSAR) initiative and,
more specifically, its operating system (OS) is to help
car manufacturers shift from the “one function per
ECU” paradigm to more centralized architecture
designs by providing appropriate protection
mechanisms.

Another crucial evolution in the automotive
industry is that chip manufacturers are reaching the
point where they can no longer cost effectively meet
the increasing performance requirements through
frequency scaling alone. This condition is one reason
that multicore ECUs are gradually introduced in the
automotive domain. The higher level of performance
provided by multicore architectures may help
simplify in-vehicle architectures by executing on
multiple cores that the software previously run on
multiple ECUs. This possible evolution toward more
centralized architectures is also an opportunity for car
manufacturers to decrease the number of network
connections and buses. As a result, parts of the
complexity will be transferred from the
electrical/electronic architecture to the hardware and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1783
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

software architecture of the ECUs. However, static
cyclic scheduling makes it easy to add functions to an
existing ECU.

In practice, important architectural shifts are
hindered by the carryover of ECUs and existing
subnetworks, which are widely used by generalist car
manufacturers. The extent to which more centralized
architectures will be adopted thus remains unsure.

The introduction of multisource and
multicore will induce drastic changes in the software
architecture of automotive ECUs. Section II
introduces the most likely scheduling choices and the
literature relevant to the task scheduling in
multiprocessor automotive ECUs. Then, Section III
presents solutions for the scheduling of numerous
software modules
when only a few OS tasks are allowed. This paper
builds on the study published in [5], where it was
assumed that only one sequencer task was running on
each core of the ECU to schedule the runnables. In
Section V, we consider how we can build several
sequencer tasks while possibly scheduling other asks
on the same core, and we discuss how we can
globally analyze the schedulability of such systems.
For clarity, “sequencing” refers to the scheduling of
runnables, whereas “scheduling” is solely used for
tasks.

2. Scheduling in the automotive domain

Scheduling Design Choices for Multicore
ECUs

In this section, we explain and justify,

particularly in light of predictability requirements, the
multicore scheduling approach, which is, to the best
of our knowledge, the most widely considered
method in the automotive industry.
1) Partitioning Scheduling Scheme: In a multicore
system, either the tasks are statically allocated to the
cores or they can dynamically be distributed at
runtime to balance the workload or migrate functions
to increase availability. The latter approach involves
complex tasks and resource interactions that are
difficult to predict and validate. Thus, approaches
that rely on static allocation (i.e., partitioning) and
deterministic mechanisms such as periodic cyclic
scheduling are more likely to be used in the

automotive context, and this is the option taken
within the AUTOSAR consortium. Scheduling tasks
on a multiprocessor systems under the static
partitioning approach has been well studied; for
example, see [6]–[9]. However, the works we are
aware of deal with online algorithms such as fixed
priority preemptive (FPP) or earliest deadline first
(EDF) and do
not consider the static cyclic scheduling of tasks.
2) Static Cyclic Scheduling: The static cyclic
scheduling of elementary software modules or
runnables is common, because there are usually many
more runnables than the maximum number of tasks
allowed by automotive operating systems such as
OSEK/VDX or AUTOSAR OS. Thus, runnables
must be grouped together and scheduled within a
sequencer task (also
called a dispatcher task). In this paper, we focus on
how we can sequence large runnable sets on
multicore platforms using a
static partitioning approach. Indeed, the static task
partitioning scheme is very likely to be adopted, at
least, in a first step, because it is conceptually simple
and provides better predictability for ECU designers
compared with a global scheduling approach. We aim
at developing practical algorithms whose
performances can be guaranteed to build the
dispatcher tasks on each core and to schedule the
runnables within these dispatcher tasks to comply
with sampling constraints and, as long as possible,
uniformize the CPU load over time. This latter
objective is, of course, important to minimize the
hardware cost
and to facilitate the addition of new functions, as
typically done in the incremental design process of
car manufacturers. This objective is achieved by
desynchronizing the runnable release
dates. Precisely, the first release date of each
runnable, called its offset, is determined to uniformly
spread the CPU demand over time. The configuration
algorithms developed in this paper are closely related
to [10] (monoprocessor scheduling of tasks with
offsets) and [11] (scheduling of frames with offsets),
but it is applied to multicore and goes beyond as we
provide lower bounds on the performances.
However, the proprietary algorithms used in these
tools can usually not be disclosed, and they are
sometimes specialized for some specific usage.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1784
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Fig. 1. Model of the runnables. After its release,
an instance of a runnable has to be executed before
the next instance is released (i.e., the deadline is set
to
the period).

Model Description
In this paper, we consider a large set of n periodic
elementary software modules, also called runnables,
that will be allocated
on an ECU that consists of m identical cores. In
practice, a runnable can be implemented as a function
that is called,
whenever appropriate, within the body of an OS task.
1) Runnable Characteristics: The ith runnable
is denoted by Ri = (Ci, Ti,Oi, {R}, Pi). Quantities Ci,
Ti, and Oi correspond,
respectively, to the worst case execution time
(WCET), the period (i.e., the exact time between two
successive releases), and the offset of Ri. As shown
in Fig. 1, the offset of a runnable is the release date of
the first instance of that runnable, and subsequent
instances are then periodically released. The choice
made for the offset values has a direct influence on
the repartition of the workload over time.
 2) Dispatcher Task: Runnables are scheduled on
their designated core using a dispatcher task or a
“sequencer task,” which stores the runnable
activation times in a table and releases them at the
right points in time. A dispatcher task is characterized
by the duration of the dispatch table Tcycle,
which is executed in a cyclic manner, and by a
quantum Ttic, which is the duration of a slot in the
table. Typically, we may have, for example, Tcycle =
1000 ms and Ttic = 5 ms. Note that Tcycle must be a
multiple of the greatest common divisor of the
runnable periods and the least common multiple
(LCM) of these periods must be a multiple of Ttic. As
a result, a dispatch table holds Tcycle/Ttic slots.
3) Assumptions: In this paper, we place a set of
working assumptions, which, in our experience, can

most often be met in current automotive applications,
as follows.
• Each runnable is periodically executed strictly. As a
result, the whole trajectory of the system is defined
by the first
activation times of the runnables (i.e., their offsets).
• The WCETs of the runnables are assumed to be
small compared to Ttic. Typical values for the case
that we consider would be 5 ms for Ttic and Ci ≤ 300
μs.
• All cores are identical with regard to their
processing
speed.
• There are no dependencies between runnables
allocated on different cores. Therefore, all cores can
independently be scheduled. This assumption is in
line with the choices made by AUTOSAR with
regard to multicore architecture.
4) Schedulability Condition: Assuming that we
only consider runnable scheduling, the system is
schedulable and, thus,
can safely be deployed if and only if the following
conditions are satisfied on each core.
1) The runnables are strictly periodically executed.
2) The initial offset of each runnable is smaller than
its period.
3) The sum of the WCET of the runnables allocated
in each slot does not exceed a given threshold, which
is typically chosen as the duration of the slot, i.e.,
Ttic.

3. RUNNABLE SEQUENCING
ALGORITHMS FOR MULTICORE
PROCESSORS
 In this section, we present algorithms and,
when possible, derive
lower bounds on their efficiency to schedule large
numbers of runnables on multicore ECUs. Because
automotive OSs can only handle a limited amount of
OS tasks, the sequencing of runnables has to be done
within dispatcher tasks. The first step of the approach
is to partition the runnable sets onto different cores.
The next and last step is to determine the offsets
between the runnables allocated on each core to
balance the load over time.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1785
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A. Building Tasks as a Bin-Packing Problem
It is assumed that the number of cores is

fixed. We first distribute all the runnables on the
cores. Assigning n tasks to
m cores is similar to subdividing a set of n elements
into m nonempty subsets. By definition, the number
of possibilities for this problem is given by the
Stirling number of the second kind

Considering that the runnables may have core
allocation constraints, the cores should be
distinguished. Thus, the m! combinations
of cores must be considered. As a result, we have at
most different possibilities for the partitioning
problem alone. Such a complexity prevents us from
an exhaustive search. For example, with n = 30 and m
= 2, the search space holds more than one billion
possibilities. Considering this complexity, to balance
as evenly as possible the utilization of processor
cores, we propose a heuristic based on the bin-
packing decreasing worst-fit scheme for a fixed
number of bins (where “bins” are processor cores).
The heuristic is given in Algorithm 1.
B. Strategies for Sequencing Runnables

The next stage consists of building the
dispatch table for the set of runnables. In the first
step, it is assumed that there are no precedence
constraints between the runnables and that a single
sequencer table is needed per core. This latter
assumption can easily be relaxed, as done in Section

1) Least Loaded Algorithm: Considering a
runnable Ri of period Ti, there are (Ti/Ttic)
possibilities for allocating this runnable (see
schedulability condition 2 in Section II-B4). As a
result there are i=1(Ti/Ttic) alternative schedules for
the n runnables, and given the cost function, we are
not aware of any
ways of finding the optimal solution with an
algorithm that does not have an exponential
complexity. Considering a realistic case of 50
runnables whose period is as least twice as large as
Ttic, we would need to evaluate a minimum of 250
possible solutions. Once again, given the complexity,
we have to resort to a heuristic. Here, we adapt to the

problem of sequencing runnables the LL algorithm
proposed by Grenier et al. in [11]
for the frame offset allocation on a controller area
network.
The intuition behind the heuristic is simple. At each
step, we assign the next runnable to the LL slot, as
described in Algorithm 2. The load of a slot is the
sum of the Ci of the
runnables {Ri} assigned to this slot. This algorithm is
further referred to as the LL algorithm.

slot 1 2 3 4 5 6 7

load 2 4 2 3 2 4 2

For practical applications, ties at step 1 are
broken using the highest WCET first, and ties at step
2a are broken by choosing the central slot of the
longest sequence of consecutive slots having the
minimum load. Although the latter rule for breaking
ties does not have any impact on the theoretical
results, which will be derived next, it helps separate
load peaks, which is important from the ECU
designer point of view. As an illustration, applying
the LL heuristic to the set of runnables-mode voltage.

2) Upper Bound on the Peak Load: Here, we
derive an upper bound on the peak load, which holds
for runnable sets with harmonic periods (i.e., each
period is a multiple of all smaller periods). Based on
this value, we consequently derive a closed form
sufficient schedulability condition. In this perspective
we first point out that the slots in which a runnable Ri
will periodically be assigned are of equal load, which
is the rationale behind step 2a in Algorithm 2.

Lemma 1: Before the allocation of a runnable Ri,
the slot allocation induced by the previously allocated
runnables repeats with a period (Ti/Ttic).

 Lemma 2: The maximum load in the LL slot is
obtained for perfect load balancing, which
corresponds to a constant load throughout the cycle.

Proof: Reasoning with a constant allocated load,
anything else than a perfect load balancing will result
in a load below the average load per slot in some slot
that will eventually be chosen to allocate the runnable
under consideration.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1786
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Theorem 3: On processor k, an upper bound on the
peak load of a slot allocation is

Proof: In the case of perfect load balancing, before
the allocation of R_ i, the load of a slot is given by

After the allocation of Ri, the load in the
corresponding slot is

Consequently, the worst case peak load on processor
core k resulting from the allocation of Ri in a slot is

4. EXPERIMENTATIONS

Here, we evaluate the ability of the algorithms to
uniformize the CPU load over time and to keep on
providing feasible solutions at very high load levels.
For this purpose, the algorithms LL, LP, and LPkσ,
described, respectively, in Sections III-B1, B4, and
B5, have been implemented in the freely available
software RTaW-ECU.

A. Balancing Performance

We applied the algorithms to sets of runnables that
are realistic in the sense that their characteristics (i.e.,
period and WCET) are drawn at random from
distributions derived from an existing body gateway
ECU with about 200 runnables whose periods are
close to harmonic (only about 5% of the runnables
have no harmonic periods).

In the experiments, the duration of the slot Ttic is set
to 5 ms, the largest WCET is 30 times the smallest
WCET, and the periods are nonharmonic, chosen in
{10, 20, 25, 40, 50, 100, 200, 250, 500, 1000} ms.
Random dependencies between runnables are also
introduced through the following three parameters.

• Interdependency ratio, i.e., the percentage of
runnables that are dependent and must thus be
executed on the same core, is chosen equal to 30%.

• Maximum size of the clusters of dependent
runnables is equal to 4.

• Core locality constraint ratio is the percentage of
runnables that are pre allocated to a given core,
chosen to be equal to 30%.

The following additional parameters are used for this
experimentation:

1) Cmax = 300 μs; 2) Ttic = 5 ms; 3) Tcycle = 1 s.

In addition, there are more than 4000 runnables to
schedule on three cores, inducing an average load of
95% of the capacity of the ECU.

 Fig2.Distribution of the load percentage over time.

The parameters have been set so that the problem is
challenging, because we are above the harmonic
schedulability bound, which would be 94% here.

B.Schedulability Performances and
Robustness on Automotive ECUs

The goal is to assess the extent to which the
schedulability bound, even if it has been derived in
the harmonic case, can provide guidelines for the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1787
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

nonharmonic case. Precisely, we measure the success
rate of the algorithms in the nonharmonic case at load
levels such that feasibility would be ensured in the
harmonic case. In the existing body gateway ECU,
the set of task periods is close to be harmonic,
because withdrawing only a few runnables ensures
the harmonic property. To test the algorithms in a
more difficult context, we build a “hard”
nonharmonic case with more departure from the
harmonic property. Precisely, the periods are now
chosen in the set {10, 20, 25, 40, 50, 100, 125, 200,
125, 500, 1000} ms.

As shown in Table III, when the load is close to the
harmonic schedulability bound, the algorithms
remain efficient, in particular the LP, which
successfully scheduled the 1000 random
configurations of the test. This result suggests that the
harmonic schedulability bound is also a good
dimensioning criterion in the nonharmonic case.
Table IV presents the results obtained at higher loads,
i.e., above the harmonic schedulability bound.
Precisely, sets of runnables with the maximum
WCET equal to 300 and 900 μs and CPU loads equal
to 95% and 97% are scheduled with LL, LP, and
LP1σ.

6. CONCLUSION

Multisource software and multicore ECUs will
drasticall change the electrical/electronic
architectures and should enable more cost effective
and more flexible automotive embedded systems. In
our view, the OS protection mechanisms specified by
AUTOSAR provide a sound basis for developing
appropriate safety mechanisms and policies, despite
the growing complexity and criticality of software
functions. However, current design methodologies
need to be adapted to this new context, and there is a
wide range of technical problems to be solved.

Among these issues are the design of the software
architectures and the scheduling of the software
components, which have been considered in this
paper. The set of runnable sequencing algorithms
proposed in this paper aims at uniformizing the load
over time and thus increases the maximum workload
schedulable on the CPU. The algorithms also provide
guaranteed performance levels in some specific

contexts. Experimentations on realistic case studies
have confirmed that the algorithms are versatile and
efficient in terms of CPU usage optimization.

Fig 3. Outpuf of LP algorithm with efficiency 92%

We have presented practical solutions for
scheduling activities according to both the static
cyclic and priority-driven paradigms, as it is
becoming a need in automotive multicore ECUs and
other complex embedded systems with dependability
requirements such as in the aerospace domain.

Fig 4. Output of LL algorithm with efficiency
91%

Fig 5. Output of LP sigma algorithm with efficiency
94%

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1788
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig 5. Output of LC algorithm with efficiency 98%

This approach first requires the precise modeling of
the data exchanges and capturing their timing
constraints, for example, using the TIMMO-2-USE
methodology.

REFERENCES

[1] A. Emadi, Y. Lee, and K. Rajashekara, “Power
electronics and motor drives in electric, hybrid
electric, and plug-in hybrid electric vehicles,” IEEE
Trans. Ind. Electron., vol. 55, no. 6, pp. 2237–2245,
Jun. 2008.

[2] F. Mapelli, D. Tarsitano, and M. Mauri, “Plug-in
hybrid electric vehicle: Modeling, prototype
realization, and inverter losses reduction analysis,”
IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 598–
607, Feb. 2010.

[3] D.-J. Kim, K.-H. Park, and Z. Bien, “Hierarchical
longitudinal controller for rear-end collision
avoidance,” IEEE Trans. Ind. Electron., vol. 54, no.
2, pp. 805–817, Apr. 2007.

[4] T. Bucher, C. Curio, J. Edelbrunner, C. Igel, D.
Kastrup, I. Leefken, G. Lorenz, A. Steinhage, and W.
von Seelen, “Image processing and behavior planning
for intelligent vehicles,” IEEE Trans. Ind. Electron.,
vol. 50, no. 1, pp. 62–75, Feb. 2003.

[5] N. Navet, A. Monot, B. Bavoux, and F. Simonot-
Lion, “Multisource and multicore automotive
ECUs—OS protection mechanisms and scheduling,”
in Proc. IEEE ISIE, 2010, pp. 3734–3741.

[6] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son,
“New strategies for assigning real-time tasks to
multiprocessor systems,” IEEE Trans. Comput., vol.
44, no. 12, pp. 1429–1442, Dec. 1995.

[7] Y. Oh and S. Son, “Fixed-priority scheduling of
periodic tasks on multiprocessor systems,” Dept.
Comput. Sci., Univ. Virginia, Charlottesville, VA,
Tech. Rep. CS-95-16, 1995.

[8] S. Lauzac, R. Melhem, and D. Mossé, “An
improved rate-monotonic admission control and its
applications,” IEEE Trans. Comput., vol. 52, no. 3,
pp. 337–350, Mar. 2003.

[9] A. Karrenbauer and T. Rothvoss, “An average-
case analysis for rate monotonic multiprocessor real-
time scheduling,” in Proc. 17th Annu. ESA, 2009, pp.
432–443.

[10] J. Goossens, “Scheduling of offset free
systems,” Real-Time Syst., vol. 24, no. 2, pp. 239–
258, Mar. 2003.

[11] M. Grenier, L. Havet, and N. Navet, “Pushing
the limits of CAN— Scheduling frames with offsets
provides a major performance boost,” in Proc. Eur.
Congr. ERTS, 2008.

[12] RealTime-at-Work, RTaW-ECU: Static cyclic
scheduling of tasks, 2011. [Online]. Available:
http://www.realtimeatwork.com

[13] AUTOSAR Consortium, AUTOSAR Release
4.0, Specification of multicore OS architecture v1.0,
2009.

[14] M. Abramowitz and I. Stegun, Handbook of
Mathematical Functions. New York: Dover, 1970.

[15] O. Redell and M. Törngren, “Calculating exact
worst case response times for static priority
scheduled tasks with offsets and jitter,” in Proc.
RTAS, 2002, pp. 164–172.

[16] A. Mok and D. Chen, “A multiframe model for
real-time tasks,” IEEE Trans. Softw. Eng., vol. 23,
no. 10, pp. 635–645, Oct. 1997.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1789
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[17] S. Baruah, D. Chen, and A. Mok, “Static-priority
scheduling of multiframe tasks,” in Proc. 11th
Euromicro Conf. Real-Time Syst., 1999, pp. 38–45.

[18] A. Zuhily and A. Burns, “Exact response time
scheduling analysis of accumulatively monotonic
multiframe real time tasks,” in Proc. ICTAC, 2008,
pp. 410–424.

IJSER

http://www.ijser.org/

